[TP] The pH of pure water is different at different temperatures. This means that as temperature changes ...
0% 1. the relative amounts of $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$ and $\mathrm{OH}^{-}(a q)$ in pure water change
0% 2. water become more acidic
0% 3. water becomes more basic
100% 4. None of the above
0% 5. Not sure

Lecture 16 CH131 Summer 12021

Thursday, June 24, 2021

- Complete: The pH of water

Class evaluation

- Weak acids and strong acids
- Titration: Reaction of weak acid with strong base

Next lecture: Begin ch17: Electron transfer reactions and electrochemistry.

1

What is an acid?

An acid makes $\left\{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right] . \downarrow\right.$
An acid HA reacts with water as

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \stackrel{\uparrow}{\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)}
$$

Since K_{w} is fixed (at a given temperature), the increase in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$means there is a decrease in pH and a corresponding decrease in $\left[\mathrm{OH}^{-}\right]$.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \equiv \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{zo})+\mathrm{OH}^{-}(\mathrm{ay}) \quad \mathrm{K}=\mathrm{K}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\partial \mathrm{H}^{-}\right] \\
\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]
\end{gathered}
$$

What is a base?

A base makes $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$.
A base B reacts with water as
$\rightarrow \mathrm{B}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{BH}^{+}(a q)+\mathrm{OH}^{-}$aq $)$
Since K_{w} is fixed (at a given temperature), the increase in $\left[\mathrm{OH}^{-}\right]$means there is a corresponding decrease in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and so increase in pH .

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{w}}{\left[\mathrm{OH}^{-}\right]}
$$

What is a base?

Copyrighto 2021 Dan Dill dan@bu.edu

```
Hydroxides, when dissolved in water, also make [H3O+
```

Forexample,

Since $\overline{K_{w}}$ is fixed (at a given temperature), the increase in $\left[\mathrm{OH}^{-}\right]$means there is a corresponding decrease in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and so increase in pH .
$\left\{\begin{array}{l}B(a q)+H_{2} O(l) \geqslant B H^{+}(a q)+\mathrm{OH}^{-}(a q) \\ \left.\overline{\mathrm{HA}\left(\alpha_{\theta}\right)}\right)+\mathrm{H}_{2} \mathrm{O}(l) \geqslant \mathrm{H}_{3} \mathrm{O}^{+}(q)+A^{-}(q)\end{array} \|\right.$

10
[TP] The pH of pure water is different at different temperatures. This means that as temperature changes ...
$\int / /_{0 \%}$ 1. Xthe relative amounts of $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$ and $\mathrm{OH}^{-}(a q)$ in pure water

11

13

14

Weak acids

This means its equilibrium constant,

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[H A]} \ll 1
$$

and therefore that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be determined by solving the ICE table.

Boston

16

Weak acids

A weak acid reacts with water,
$\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)$,
with yield much less than 100%.

$$
+2+2+2-1
$$

with yid much less than 100%.
\square

18
"Titrating" a weak acid: Incomplete neutralization
$V_{b}=100 . \mathrm{mL}$ of $c_{b}=0.2 \rho \mathrm{Mis}$ combined with $V_{a}=100 . \mathrm{mL}$ of
$c_{a}=0.40 \mathrm{M}$ of $\mathrm{HA}, \mathrm{K}_{a}=1.0 \times 10^{-5} \mathrm{Ht} 25^{\circ} \mathrm{C}$.

(2) ICE: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{-7}^{+}+\underset{0.020}{ }$

$$
\begin{array}{ll}
I \frac{0.020}{0.200} & 1.00 \times 10^{-t} \\
C & +\frac{0.020}{(0.200} \\
E & +x \\
0.10-x & 1.00 \times 0^{-7}+x \\
\hline 0.10+x
\end{array}
$$

Boston $\approx 0.10 \quad K_{a}=\frac{\left(1.00 \times 10^{-7}+x\right)^{x}(0.0+x)}{(0.10-x)}=\frac{x+0.10}{0.10}=x$

20

"Titrating" a weak acid

An important problem is determining $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$as a result of adding strong base. to a weak acid.
There are two steps.
First, let the added base react with the acid present 100% as a limiting reagent problem.
' ore OH -

Then, use the ICE table to solve the weak acid equilibrium. collat is [$\mathrm{H}_{3} \theta^{+}$]

BOSTON

19
"Titrating" a weak acid: Incomplete neutralization
$V_{b}=100 . \mathrm{mL}$ of $c_{b}=0.20 \mathrm{M} \mathrm{of}^{-} \mathrm{OH}^{-}$is combined with $V_{a}=100 . \mathrm{mL}$ of $c_{a}=0.40 \mathrm{M}$ of $\mathrm{HA}, K_{a}=1.0 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

Initial	0.10	10^{-7}	0.10	$10^{-7}<K_{a}$
Change				
Equilibrium				
Approximate				

21
"Titrating" a weak acid: Incomplete neutralization
$V_{\mathrm{b}}=100 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.20{\mathrm{M} \mathrm{of} \mathrm{OH}^{-}}$is combined with $V_{\mathrm{a}}=100 . \mathrm{mL}$ of $c_{\mathrm{a}}=0.40 \mathrm{M}$ of $\mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

	$H A(a q)$	H	$0(a q)$	$A(a q)$
Initial	0.10	10^{-7}	0.10	$10^{-7}<K_{a}$
Change	$-x$	$+x$	$+x$	
Equilibrium	$0.10-x$	$10^{-7}+x$	$0.10+x$	1.0×10^{-5}
Approximate	≈ 0.10	$\approx x$	≈ 0.10	1.0×10^{-5}
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x=\frac{K_{a}[\mathrm{HA}]}{\left[I^{-}\right]}=\frac{1.0 \times 10^{-5} \times 0.10}{0.10}=1.0 \times 10^{-5} / \int$				

"Titrating" a weak acid: Neutralization
$V_{\mathrm{b}}=100 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.40 \mathrm{M}$ of $\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\text { is combined with } V_{\mathrm{a}}=100 . \mathrm{mL} \text { of }}{\mathrm{HA}}$ $c_{\mathrm{a}}=0.40 \mathrm{M}$ of $\mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-6}$ and $K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=1.0 \times 10^{-8}$ at $25^{\circ} \mathrm{C}$

$$
\begin{array}{cccc}
\text { Initial } & 0.040 \% 200 & 0 & 1 . x 10^{-7} \\
\text { Change } & -x & +x & +x \\
\text { Equilibrium } & 0.20-x & x & 1 \times 10^{-7}+x \\
\text { Approximate } & \approx 0.20 & x & x \\
K_{6}=1.0 \times 10^{-8}=\frac{[H A][0 H-]}{\left[A A^{-]}\right.}=\frac{x^{2}}{0.20} \\
X=\sqrt{0.20 * 1 \times 10^{-8}}=[04-]
\end{array}
$$

"Titrating" a weak acid: Neutralization
$V_{\mathrm{b}}=100 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.40 \mathrm{M} \mathrm{of}^{2} \mathrm{OH}^{-}$is combined with $V_{\mathrm{a}}=100 . \mathrm{mL}$ of $c_{\mathrm{a}}=0.40 \mathrm{M}$ of $\mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-6}$ and $K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=1.0 \times 10^{-8}$ at $25^{\circ} \mathrm{C}$.

Initial	0.20	0	10^{-7}	0
Change	$-x$	$+x$	$+x$	
Equilibrium	$0.20-x$	x	$10^{-7}+x$	1.0×10^{-8}
Approximate	≈ 0.20	x	$\approx x$	1.0×10^{-8}

$\left[\mathrm{OH}^{-}\right]=x=\left(K_{\mathrm{b}} \times\left[\mathrm{A}^{-}\right]\right)^{1 / 2}=\left(\underline{1.0 \times 10^{-8} \times 0.20}\right)^{1 / 2}=4.5 \times 10^{-5}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(4.5 \times 10^{-5}\right)=\underline{\underline{2.2 \times 10^{-}}}$

26
"Titrating" a weak acid: Excess base
$V_{\mathrm{b}}=200 . \mathrm{mL}$ of $c_{\mathrm{b}}=0.30 \mathrm{M} \mathrm{of}^{-1}$ is combined with $V_{\mathrm{a}}=200 . \mathrm{mL}$ of $c_{\mathrm{a}}=0.20 \mathrm{M}$ of $\mathrm{HA}, K_{\mathrm{a}}=1.0 \times 10^{-6}$ and $K_{\mathrm{b}}=1.0 \times 10^{-8}$ at $25^{\circ} \mathrm{C}$.

28

