

Copyright © 2021 Dan Dill dan@bu.edu

Lecture 16 CH131 Summer 1 2021 Dan Dill dan@bu.edu Weak acids This means its equilibrium constant, $K_{\alpha} = \frac{[H_3 0^+][A^-]}{[HA]} \ll 1$ and therefore that $[H_3 0^+]$ must be determined by solving the ICE table. 16

17

Lecture 16 CH131 Summer 1 2021 Copyright © 2021 Dan Dill dan@bu.edu "Titrating" a weak acid: Incomplete neutralization $V_b = 100$. mL of $c_b = 0.20$ M of OH⁻ is combined with $V_a = 100$. mL of $c_a = 0.40$ M of HA, $K_a = 1.0 \times 10^{-5}$ at 25°C. Initial 10^{-7} 0.10 $10^{-7} < K_a$ 0.10 Change Equilibrium Approximate

Lecture 16 CH131 Summer 1 2021					Copyright © 2021 Dan Dill dan@bu.edu	
"Titrating" a weak acid: Excess base						
$V_{\rm b} = 200. \text{ mL of } c_{\rm b} = 0.30 \text{ M of OH}^- \text{ is combined with } V_{\rm a} = 200. \text{ mL of } c_{\rm a} = 0.20 \text{ M of HA}, K_{\rm a} = 1.0 \times 10^{-6} \text{ and } K_{\rm b} = 1.0 \times 10^{-8} \text{ at } 25^{\circ}\text{C}.$						
		A ⁻ (<i>aq</i>)	HA(aq)	0H ⁻ (<i>aq</i>)	Q	
BOSTON						27

