

1

8

Lecture 13 CH131 Summer 12021
 Thursday, June 17, 2021

- Effect of temperature on spontaneity

Begin ch14:Chemical equilibrium

- Reaction quotient, spontaneity, and equilibrium
- Q algebra: Q (and so K) depends on how a reaction is written
- Predicting direction of change
- Calculate equilibration using an ICE table

Next: Approximating equilibration; Equilibrium calculation examples; Effect of temperature on equilibrium: $\Delta G=R T \ln (Q / K)=\Delta H-T \Delta S$; Disturbing equilibrium; Begin Ch15: Acid-base equilibria

Atomic or molecular oxygen? $\quad \Delta G>0, M A-$-sprutanerus

At SATP, oxygen exists as a diatomic gas. $\Delta G \equiv-T \Delta S_{\text {tot }}$.
This means the free energy change for the process $\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{O}(g)$ must be positive and quite large at SATP.

the free energy change for $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g})$ is

$$
\Delta G^{\circ} / \frac{\mathrm{kJ}}{\mathrm{~mol}}=2 \times 249.2-298 \mathrm{~K} \times 10^{-3}(2 \times 161.1-205.0)
$$

10

Atomic or molecular oxygen?

$$
\Delta G^{\circ} / \frac{\mathrm{kJ}}{\mathrm{~mol}}=2 \times 249.2-298 \mathrm{~K} \times 10^{-3}(2 \times 161.1-205.0)=+463
$$

The reason ΔG° is so large and positive dentropy decrease in the surroundings, necessitated by the $2 \times 249.2 \mathrm{~kJ} / \mathrm{mol}$ of heat needed by the system to break the bonds between the pairs of oxygen atoms.

The entropy increase in the system, due to the doubling of gaseous particles, is not large enough to offset the large entropy decrease in the surroundings.

Atomic or molecular oxygen?

$$
\Delta G^{\circ} / \frac{\mathrm{kJ}}{\mathrm{~mol}}=2 \times 249.2 \underbrace{298}_{q} \mathrm{~K} \times 10^{-} \mathrm{\beta}(2 \times 161.1-205.0)=+463
$$

But what about increasing the temperature to mute the effect of heat withdrawn from the surroundings, since $\Delta S_{\text {sur }}=-\Delta H_{\text {sys }}$ f?

This would enhance the contribution of the system entropy increase, $\Delta S_{\text {sys }}$.

Atomic or molecular oxygen?

Above what T will the decomposition $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g})$ become spontaneous?
The decomposition will be spontaneous above the temperature at which

$$
\begin{aligned}
& \Delta G / \frac{\mathrm{kJ}}{\mathrm{~mol}}=0=2 \times 249.2-\frac{T}{\mathrm{~K}} \times \overbrace{10^{-3}(2 \cdot \times 161.1-205.0)}^{\Delta H_{\text {m }}} \\
& T=2 \times 249.2 \times 10^{3} /(2 \times 161.1-205.0)=4253 \mathrm{~K}
\end{aligned}
$$

So, for T above $4253 \mathrm{~K}, 0$ atoms will predominate.

Atomic or molecular oxygen?

The more T exceeds 4253 K , the greater the relative amount of O atoms to O_{2} molecules.
We'll soon learn how to quantify the relative amounts for each temperature. \|
Copyright © 2021 Dan Dill dan@bu.edu
\square
14

15

17

Spontaneity of "reactants" \rightarrow "products"

We have learned how to calculate chemical amounts using ICF (Initial, Change, Final) tables considering the limiting reagent and the percent yield.
The yield is not always 100% because the spontaneity depends on the amount // of reactants and products present.

18

Spontaneity of "reactants" \rightarrow "products"

If products (right side) increase with time, we say the reaction is spontaneous, $\Delta G<0$.
If reactants (left side) increase with time, we say the reaction is nonspontaneous, $\Delta G>0$.
If the amount of reactants and products do not change with time, we say the reaction is at equilibrium, $\Delta G=0$.

20

Spontaneity of "reactants" \rightarrow "products"

Chemical reactions proceed until the forward and reverse reactions exactly balance one another.
That is, until the reactants and products are in equilibrium. \|
That is, until $\Delta G=0$.

19

Reaction quotient Q measures reaction progress

For $a \mathrm{~A} \rightarrow b \mathrm{~B}+\stackrel{\downarrow}{\mathrm{C}}$, the reaction quotient is a specific measure of the ratio of the amount of products present to the amount of reactants present,

The amounts $[A]$, etc., are the numerical values of molarity ($\mathrm{mol} / \mathrm{L}$) for solutes and the numerical value of the partial pressure (in atm).
Because units are omitted, the reaction quotient is a number without units.
Omit any solids or liquid.

22

24

Practice: Problem 14.5

5. An important step in the industrial production of hydrogen is the reaction of carbon monoxide with water:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
(a) Use the law of mass action to write the equilibrium
expression for this reaction.
(b) At $500^{\circ} \mathrm{C}$, the equilibrium constant for this reaction is
3.9. Suppose that the equilibrium partial pressures of CC

```
Calculate the equilibrium and
D=3.9 P}\mp@subsup{\textrm{CO}}{\textrm{CH}}{2
```

 \(=\frac{3.9 \times 0.10 \times 0.10}{0.70}=\frac{0.039}{0.70}=\underline{0.056} \mathrm{/}\)
 Boston

23

25

Q depends on how a reaction is written

At a certain time, the value of the reaction quotient for the reaction

$$
\begin{gathered}
2 \mathrm{~A}+\mathrm{B} \rightleftharpoons 2 \mathrm{C} \\
\text { is } Q_{1}=4.0 . \quad=\frac{[C]^{2}}{[A]^{2}[B]}
\end{gathered}
$$

At the same time, what would be the value of Q be for the reaction

$$
4 \mathrm{~A}+2 \mathrm{~B} \rightleftharpoons 4 \mathrm{C} ?
$$

$$
Q_{4}=(\mathrm{C})^{4} /\left((\mathrm{A})^{4}(\mathrm{~B})^{2}\right)=\left(Q_{1}\right)^{2}=16
$$

26

Q depends on how a reaction is written

At a certain time, here are the values of the reaction quotients for two different

$$
\begin{aligned}
& \text { reactions, } \\
& \left\{\begin{array}{l}
2 \mathrm{~A} \rightleftharpoons \mathrm{~B}, \\
\mathrm{C} \rightleftharpoons 3 \mathrm{D}, \quad Q_{5}=(\mathrm{B}) /(\mathrm{A})^{2}=2 \\
\mathrm{D})^{3} /(\mathrm{C})=5
\end{array}=\frac{[B]}{[\mathrm{A}]^{2}}\right.
\end{aligned}
$$

$$
\text { At the same time, what would be the value of } b Q \text { e for the reaction }
$$

$$
\| 2 \mathrm{~A}+\mathrm{C} \rightleftharpoons \mathrm{~B}+3 \mathrm{D} \text { ? }
$$

$$
Q_{7}=(\mathrm{B})(\mathrm{D})^{3} /\left((\mathrm{A})^{2}(\mathrm{C})\right)=Q_{5} \times Q_{6}=10
$$

Q depends on how a reaction is written

At a certain time, the value of the reaction quotient for the reaction

$2 \mathrm{~A}+\mathrm{B} \rightleftharpoons 2 \mathrm{C}$	$\frac{[C]^{2}}{[A]^{2}[B]}$
is $Q_{1}=4.0$.	$=4.0$

At the same time, what would be the value of Q be for the reaction

$$
\left\{\begin{array}{l}
2 \mathrm{C} \rightleftharpoons 2 \mathrm{~A}+\mathrm{B} ? \quad[\mathrm{~A}]^{2}[\mathrm{~B}] \\
Q_{2}=(\mathrm{A})^{2}(\mathrm{~B}) /(\mathrm{C})^{2}=1 / Q_{1}=0.25
\end{array} \quad 1 /\left[\mathrm{CC]}^{2}[\mathrm{~A}]^{2}[B] \mathrm{C}\right] .0 \frac{1}{4.0}=0.25\right.
$$

31

32
copyight 2021
[TP] The value of the equilibrium
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$ is $K=10 . / /$
At a certain time, the partial pressures are A, B and C are, respectively, 1 bar, 1

34
[TP] For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow 2 \mathrm{C}$, at a certain time the value of its reaction quotient is $Q=7$. This means the value of the equilibrium constant for the reaction is ...

164883
10 of 15

33
[TP] The value of the equilibrium constant for the gas-phase reaction
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$ is $K=10$.
At/a certain tiphe, the partial pressures are A, B and C are, respectively, 0.2 bar, 1 bar and 4 bar. The value of the reaction quotient is $Q=\ldots$

36

37

Calculate equilibration using an ICE table

When the equilibrium constant is neither very big or very small, the calculation of equilibrium amounts must be done exactly.

39
[TP] The value of the equilibrium constant for the gas-phase reaction
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$ is $K=10$
At a certain time, the partial pressures are A, B and C are such that the value of the reaction quotient is $Q=6$. As time passes, the value of Q will ...

```
100% 1. increase
```

 \(0 \%\) 2. stay the same
 \(0 \%\) 3. Decrease
 \(0 \%\) 4. Not sure

38

Calculate equilibration using an ICE table

40

41

43

Calculate equilibration using an ICE table

$$
\mathrm{A}(g) \leftrightharpoons \mathrm{B}(g)+\mathrm{C}(g) \quad K=5.0 \mathrm{M}, Q=K, \text { equilibrium }
$$

Initial	3.0	2.0	1.0	
Change	$-x$	$+x$	$+x$	
Equilibrium	$3.0-x$	$2.0+x$	$1.0+x$	
$K=\frac{[B][C]}{[A]}=\frac{(2.0+x)(1.0+x)}{(3.0-x)} \\|$				

42

44

