

1

9

Lecture 10 CH131 Summer 12021

Thursday, June 10, 2021

- Complete: Osmotic pressure, $\Pi=R T M_{\mathrm{c}}$;

Ch12: Thermodynamic processes and thermochemistry

- First law of thermodynamics: $\Delta U=q+w$
- Measuring heat and measuring work
- Heat, q, depends on whether $w \neq 0: \Delta U=q_{V}$ and $\Delta H=q_{\mathrm{P}}$
- Enthalpy change of reaction, $\Delta H^{\circ}{ }_{r x n}$
- Enthalpy changes are additive: Hess's law

Next: Practice problem: Limiting reagent, $\Delta n_{\mathrm{gas}}, w_{\mathrm{PV}}, q_{\mathrm{P}}, q_{\mathrm{V}}$; Standard enthalpy of formation, $\Delta H^{\circ}{ }_{\mathrm{f}}$; Using $\Delta H^{\circ}{ }_{\mathrm{f}}$ to compute $\Delta H^{\circ}{ }_{\mathrm{rxn}}$; Begin ch13: Spontaneous Processes

BOSTON

2

$$
711235
$$

10

11

13

How do we know heat is present?

Heat flow is measured indirectly by temperature change in the surroundings.
The temperature of the chemical system (reactants and products) does not// \|/
change, only the temperature of the surroundings.

How do we know heat is present?
Temperature decrease in surroundings, $\Delta T_{\text {sur }}<0$ means..
energy flow into system from surroundings ...
energy of system goes up ...
and so, $q \geq 0$.

$$
=
$$

\qquad

\section*{| BOSTON |
| :--- |
| UNIVRSTX |}

14

How do we know heat is present?

If $q>0$ the process is called endothermic.
The system gains energy in the form of heat from the surroundings.
The surroundings cools, $\Delta T_{\text {sur }}<0$.
There is no change in the temperature of the system, $\Delta T_{\text {sys }}=0$, since all of the energy is used in the net breaking of chemical bonds, rather than to increase motion of the particles of the system.

15

How do we know heat is present?

If $q<0$ the process is called exothermic.
The system loses energy in the form of heat to the surroundings.
The surroundings warms, $\Delta T_{\text {sur }}>0$.
There is no change in the temperature of the system, $\Delta T_{\text {sys }}=0$, since all of the energy comes from net making of chemical bonds, rather than the slowed motion of the particles of the system.

How do we know heat is present?

Temperature increase in surroundings, $\Delta T_{\text {sur }}>0$, means ...
energy flow out of system into surroundings ...
energy of system goes down ...
and so, $q<0$.

16
[T] When $\mathrm{NaHCO}_{3}(s)$ is dissolved in 200 mL of $\mathrm{HCl}(a q)$, the temperature of the solutiongoes down. This means the chemical reaction between the
$\mathrm{NaHCO}_{3}(\mathrm{~s})$ and the $\mathrm{HCl}(\mathrm{aq})$ results in the chemical system ...

12 of 15

18

How do we know if work is present?

Macroscopic movement, for example of a piston.

Work done by gas: force \times distance $=\frac{F_{\text {ext }}}{A} \times \Delta x A \neq P_{\text {ext }} \Delta V$
Work done on gas: $w=-P_{\text {ext }} \Delta V=\cdots$ AU $*$ distomen

$$
=A_{\text {A }} P_{\text {ant }} \stackrel{\text { distaste }}{ }=P_{\text {at }} \Delta V
$$

\qquad

19

How do we know if work is present?

Macroscopic movement, for example of a piston.

Expansion of gas pushes against $P_{\text {ext }}$: gas expends energy, $w<0$
Compression of gas pushed on by $P_{\text {ext }}$: gas gains energy, $w>0$

20

Heat depends on whether there is work

Energy change in chemical reactions is due to the balance of the energy
required to break bonds and the energy released when bonds are made.

BosTon

22

Heat depends on whether there is work

No matter how the chemical reaction is carried out (in a sealed, constant volume container or in an open, constant-pressure container), for a given amount of reactants and a given reaction yield, the energy change,
$\left.\| \Delta U=\vec{U}_{\text {final }}-U_{\text {initial }}\right) \|$
is fixed, by the number and kinds of bonds being made and broken

Heat depends on whether there is work

If the process takes place in an open container, there may be volume change
(if there is net formation or consumption of gas) and so work may not be 0 ,

$$
w=-P_{\mathrm{ext}} \Delta V \neq 0
$$

This means only some of the energy change must appear as heat flow, the remainder being account for as work.

$$
\left.\begin{array}{ll}
\text { rigid, seated coutaines: } & \Delta U=q \\
\text { open container : } & \Delta U=q
\end{array}\right\}
$$

Heat depends on whether there is work

If the process takes place in a sealed, rigid container, there can be no volume change and so work is 0 ,

$$
\underline{\underline{w}}=-P_{\mathrm{ext}} \Delta V=-P_{\mathrm{ext}} \times 0=0 \quad \Delta U=q_{y} .
$$

This means all the energy change must appear as heat flow between the system and the surroundings.

Energy diagrams relate $\Delta U=q_{\mathrm{v}}$ and $\Delta H=q_{\mathrm{P}}$

$\left\{\begin{array}{l}\left.\mathrm{NaHCO}_{3}(s)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)-\mathrm{CO}_{2}(g)\right)+\mathrm{Na}^{+}(a q)+2 \mathrm{H}_{2} \mathrm{Ol}(l) \text { is endothermic, } q>0\end{array}\right.$ (solution/surroundings cool). How much cooling is there at constant volume $\left(q_{\mathrm{V}}\right)$, compared to that at constant pressure $\left(q_{\mathrm{P}}\right)$?

26

28
$\Delta H \equiv q_{p}$ differs only a little from $\Delta U \equiv q_{y}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Energy change: } \Delta U=\bar{q}_{\mathrm{V}}=\overline{q_{\mathrm{P}}+} \\
\left.\begin{array}{l}
\text { Enthalpy change: } \Delta H \equiv \underline{\underline{q_{\mathrm{P}}}}
\end{array}\right\} \quad-P_{\text {ext }}\left(V_{f}-V_{i}\right) \\
q_{\mathrm{V}}-q_{\mathrm{P}}=-P_{\text {ext }} \Delta V=-\Delta n_{\mathrm{g}} R T
\end{array} \quad-\left(\mathrm{P}_{\text {eut }} V_{f}-P_{\text {eat }} V_{i}\right)
\end{aligned}
$$

For 1.0 mol change in the amount of gas as a result of the reaction,

$$
1.0 \mathrm{~mol} \times R T=1.0 \mathrm{~mol} \times 8.314 \mathrm{~J} /(\mathrm{moTK}) \times 300 \mathrm{~K} \approx 2.5 \mathrm{~kJ}
$$

so $\Delta U=q_{\mathrm{V}}$ and $\Delta H \equiv q_{\mathrm{p}}$ differ little from one another.
Typical values of q are several orders of magnitude larger, and so q_{V} and q_{P} always have the same sign.

Energy diagrams relate $\Delta U=q_{\mathrm{V}}$ and $\Delta H=q_{\mathrm{P}}$

The combustion $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
is exothermic, $q<0$ (solution/surroundings warm). How much warming is there at constant volume (q_{v}), compared to that at constant pressure $\left(q_{\mathrm{p}}\right)$?

$\Delta H=q_{\mathrm{P}}$ differs only a little from $\Delta U=q_{\mathrm{V}}$

```
Energy change: }\DeltaU=\mp@subsup{q}{\textrm{V}}{}=\mp@subsup{q}{\textrm{P}}{}+
```

Enthalpy change: $\Delta H \equiv q_{\mathrm{P}}$
In the open laboratory (constant pressure), pressure is constant, so it is convenient to work with enthalpy change.

Enthalpy change of reaction, $\overbrace{H_{r x n}^{\circ}}$

We have seen that while heat flow at constant volume is the direct measure of energy change $\left(\Delta U=q_{\mathrm{v}}\right)$, heat flow at constant $\left(q_{P}\right)$ is much more convenient to measure and differs only a little bit from q_{V}.

For this reason from now on we will focus on enthalpy change, $\Delta H=q_{\mathrm{P}}$

Enthalpy change of reaction, $\Delta H^{\varrho_{r x n}}$

How much(heat flows)depends on how much limiting regent there is and on the yield of the chemical reaction.
To standardize the reporting of enthalpy changes, the standard enthalpy change of reaction ($\Delta H^{\circ}{ }_{\mathrm{rxn}}$) is defined as the heat flow at SATP (1 bar and $25^{\circ} \mathrm{C}$) for the chemical equation as written.//

34

Enthalpy change of reaction, $\Delta H^{\circ}{ }_{r x n}$

Consider the chemical equation

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2{ }^{2} \mathrm{NO}_{2}(g) \Delta H^{\circ} \stackrel{\mathrm{rxn}}{=}=\Theta 14.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Here are the different ways to use this $\overline{\bar{c}}$ hemical equation and its enthalpy change value.
" 114.1 kJ of heat are released for each 2 mol of $\mathrm{NO}_{2}(g)$ formed."
" 114.1 kJ of heat are released for each 2 mol of $\mathrm{NO}(g)$ consumed."
" 114.1 kJ of heat are released for each 1 mol of $\mathrm{O}_{2}(g)$ consumed."
"114.1 kJ of heat are released for each reaction unit."
" 114.1 kJ of heat are released for each mol of reaction.")

Enthalpy change of reaction, $\triangle \mathrm{H}$

$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \Delta H^{\circ}{ }_{\mathrm{rxn}}=-114.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
If $11.5 \mathrm{~g} \mathrm{NO}(g)$ reacts completely with excess oxygen, what is q_{P} ?

$$
q_{P}=11.5 \mathrm{~g} \frac{\mathrm{~mol} \mathrm{NO}}{30.0 \mathrm{~g}} \times \frac{\mathrm{mol} \mathrm{rxn}}{2 \mathrm{~mol} \mathrm{NO}} \times \frac{-114.1 \mathrm{~kJ}}{\mathrm{~mol} \mathrm{rxn}}=-21.9 \mathrm{~kJ}
$$

37

39

Rules for Hess's law calculations

Adding reactions, their heat flow adds. //

```
[0950M
```

38

40

41

43

$\Delta H^{\circ}{ }_{\text {rxn }}$ via Hess's law

Use energy conservation to determine ΔH of the third reaction below.
$A \rightarrow B$
$\mathrm{C} \rightarrow \mathrm{B}$
$A \rightarrow C$
ΔH_{1}
ΔH_{2}
ΔH_{3}
$\left.\begin{array}{l}A \rightarrow B \\ B \rightarrow C-\Delta H_{2}\end{array}\right\}$

Since energy is conserved ...

$$
\stackrel{\Delta H_{3}}{=} \underline{\underline{\Delta H}} \underline{\underline{\Delta}}
$$

BOSTON
BNIVRSTIT

42

$$
\begin{array}{cll}
\Delta H_{\text {rxn }}^{\circ} \text { via Hess's law } \\
\mathrm{A} \rightarrow \mathrm{~B} & \Delta H_{1}=+85 \mathrm{~kJ} & \mathrm{~B} \rightarrow \mathrm{C} \quad \Delta H=-\Delta H_{2}=+5 \mathrm{z} \\
\mathrm{C} \rightarrow \mathrm{~B} & \Delta H_{2}=-52 \mathrm{~kJ} & \\
\mathrm{~A} \rightarrow \mathrm{C} & \Delta H_{3}=\Delta H_{1}-\Delta H_{2}=+85 \mathrm{~kJ}-(-52 \mathrm{~kJ})=+137 \mathrm{~kJ}
\end{array}
$$

Illustrate this result with theenthalpy diagram for these processes. //

44

45

