

Letture 3 CHI31 Summer 1 2021 **Kinetic molecular theory** The total pressure is the sum of the contributions of the $N = nN_A$ particles of the gas, $P = P_1 + P_2 + \dots + P_N = \frac{1}{3} \frac{m}{V} (v_1^2 + v_2^2 + \dots + v_N^2)$ We can simplify this expression by dividing the sum of squared speeds by the number of particles (N), $P = \frac{1}{3} \frac{mN}{V} (\frac{v_1^2 + v_2^2 + \dots + v_N^2}{N}) = \frac{1}{3} \frac{mN}{V} v_{rms}^2$

Lecture 6 CH131 Summer 1 2021	Copyright © 2021 Dan Dill dan@bu.edu
Why the gas law does not depen	id on mass
We have seen that the macroscopic behavior of gas p $\ P = \frac{nRT}{V} = \frac{1}{3} \sqrt[4]{n} \sqrt{J_{ANS}^{2}} = \frac{1}{3} \sqrt[4]{n} \sqrt{J_{ANS}^{2}}$ Why doesn't <i>P</i> depend on molar mass (<i>M</i>)?	$M^{\text{ressure is that}} = M^{\text{RT}}$ $M^{\text{RT}} = V$ M^{RT} $S^{\text{RT}} = M^{\text{RT}}$
BOSTON UNIVERSITY	18
18	

Lecture 6 CH131 Summer 1 2021 Dan Dill dangburedu Real gases $V = V_{ideal} + bn$ At high pressures, the volume of the molecules of a gas (*bn*) is no longer negligible relative to the volume of the container (*V*). Image: The second second

Lecture 6 CH131 Summer 1 2021 Copyright © 2021 Dan Dill dan@bu.edu **Real gases** Computations with the van der Waals equation are usually done by rearranging it for the observed pressure, $V P = \frac{nRT}{V-bn} - a\left(\frac{n}{V}\right)^2$ and using tabulated values of van der Waals *a* and *b*. a/L²·bar·mol² b/L·mol-1 Gas Formula NH_{3} 4.30440.0378473.6551 0.042816 carbon dioxide CO₂ 0.043067 methane CH 2.3026neon 0.2167 0.017383 1.3661 0.038577 nitrogen 1.38200.031860 oxygen Ο, C.H. 9.3919 0.090494 propane 54

Copyright © 2021 Dan Dill dan@bu.edu

Lecture 6 CH131 Summer 1 2021	Copyright © 2021 Dan Dill dan@bu.edu	
Working with the van der Waals equation		
$P = \frac{nRT}{v - bn} - a \left(\frac{n}{v}\right)^2 \text{ and } R = 0.08314 \text{ L bar/(K mol)}$		
For Cl_2 , $a = 6.58$ bar L^2/mol^2 and $b = 0.0562$ L/mol. What are the ideal and observed pressures of 3.00 mol of Cl_2 confined in 4.00 L at 500. K?		
$P_{\text{ideal}} = \frac{nRT}{V} = 31.3 \text{ bar (confirm yourself)}$		
$\sqrt{P} = \frac{nRT}{V-bn} - a \left(\frac{n}{V}\right)^2 = 32.5 \text{ bar} - 3.7 \text{ bar} = 28.8 \text{ bar}$ (cor	nfirm yourself)	
Since the observed pressure is smaller than the ideal pressure, the effect of a is more important than b at 500. K.		
BOSTON UNIVERSITY	59	
59		

Eventure 6 CH131 Summer 1 2021 Dan DBI dam@bu.edu Working with the van der Waals equation $P = \frac{nRT}{v - bn} - a \left(\frac{n}{v}\right)^2 \text{ and } R = 0.08314 \text{ L bar/(K mol)}$ In general, the effect of *b* is muted at low *T* and so the effect of *a* dominates there, while for high *T* the effect of *b* dominates.