

Lewis diagram of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$

0 . skeleton

1. e's we have $=4+8+12=24$
2. e's needed: $8+32=40$
3. e's shared single
$=$ needed - have $=40-24=16$
4. e's shared multiple
$=$ shared single - shared $=16-14=2$
5. e's unshared lone
$=$ have - shared $=24-16=8$
\OSTON
\OSTON

8

Lewis diagram of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$

0 . skeleton

1. e's we have $=4+8+12=24$
2. e's needed: $8+32=40$
3. e's shared single
$=$ needed - have $=40-24=16$
4. e's shared multiple
$=$ shared single - shared $=16-14=2$
5. e's unshared lone
$=$ have - shared $=24-16=8$
6. formal charge determines "best" place for shared double pair

Formal charge determines "best" structure

```
                                    41. Determine the formal charges on all the atoms in the fol-
                                    . Determine the formal
                                    H-\ddot{N}=\ddot{O}\mathrm{ and }\textrm{H}-\ddot{\textrm{O}}=\ddot{\textrm{N}}
    Which one would best represent bonding in the molecule
    HNO?
41. Determine the formal charges on all the atoms in for
is diagrams.
Which one would best represent bonding in the molecule
``` HNO?
 \(17 \% 4\). 16
 \(17 \%\) 5. Something else
[TP] How many electrons are there is the Lewis structure of HNO?
\(17 \% 1\) 1. 10
\(17 \% \quad 2 . \quad 12\)
\(17 \%\) 3. 14
\(17 \%\) 4. 16

10
 \(17 \%\) 6. Not sure

17\% 6. Not sure

9

19

\section*{Gas pressure}

Pressure is the force exerted on the walls of the container, per unit area.
\[
P=\frac{\text { force }}{\text { area }}=\frac{\text { energy } / \text { distance }}{\text { area }} \|=\frac{\text { energy }}{\text { volume }}
\]

The standard unit of energy is Joule and of volume is cubic meter \(\left(m^{3}\right)\) and the corresponding unit of pressure is the Pascal,
\[
1 \mathrm{~Pa}=1 \frac{\mathrm{~J}}{\mathrm{~m}^{3}}
\]

Atmospheric pressure is close to exactly \(100,000 \mathrm{~Pa}\), known as 1 bar.
The historical unit of pressure is 1 atm, slightly larger than 1 bar. //
\[
1 \mathrm{~atm}=1.01325 \text { bar (exactly) }
\]

\section*{Gas properties}

Gases are characterized by the following:
- the temperature (\(T\)) of the gas, a measure of how fast their particles are moving;
- the volume \((V)\) of the container;
- the number of moles \((n)\) of particles enclosed in the container;
- and, the pressure \((P)\) exerted by the particles on the walls of the container.

\section*{Gas behavior}

Let's explore how a gas is affected by changes in \(T, V, n\), and \(P\).
Doing this, visualize gases as collections of widely separated particles, moving faster as temperature increases, generating pressure as a result of collisions with the walls of the container.

22

22

23

\section*{Gas behavior}

If \(V\) is decreased, then the particles travel less far between collisions with the walls, and so collide with the walls more often, generating greater pressure.
We can express this as \(P\) being inversely proportional to \(V\),

Let's explore next how the constant of proportionality, \(c(T, n)\), depends on the number of particles (the number of moles \(n\)).

\section*{Gas behavior}

When more particles are added to the same \(V\) at the same \(T\), there will be more collisions with the walls, and so the pressure must go up.
We can express this as \(P\) being proportional to \(n\),
\[
P=c^{\prime}(T) n / V
\]

Let's explore next how the constant of proportionality, \(c^{\prime}(T)\), depends on the temperature, \(T\).

\section*{Bosron}

26

27

\section*{Gas behavior}

Heating a gas at constant \(V\), the particles will move faster, so collide with the wall more often, and so the pressure must go up.
We can express this as \(P\) being proportional to \(T\),
\[
\begin{aligned}
& P=c^{\prime \prime} n T / V \\
&=
\end{aligned}
\]

In this expression temperature is measured in Kelvin,
\[
\left.T(\text { in } \mathrm{K})=t\left(\text { in }^{\circ} \mathrm{C}\right)+273.15 / /\right)
\]
\(T=0 \mathrm{~K}\) is the temperature at which particles would not be moving at all and so would not exert any pressure.

\section*{BOSTON}

28```

